導數,也叫導函數值。那么,高中數學導數公式及運算法則有哪些呢?下面老師整理了一些相關信息,供大家參考,收藏,轉發!
高中數學導數公式有哪些1.y=c(c為常數)y'=0
2.y=x^ny'=nx^(n-1)
3.y=a^xy'=a^xlna
y=e^xy'=e^x
4.y=logaxy'=logae/x
y=lnxy'=1/x
5.y=sinxy'=cosx
6.y=cosxy'=-sinx
7.y=tanxy'=1/cos^2x
8.y=cotxy'=-1/sin^2x
加(減)法則:[f(x)+g(x)]'=f(x)'+g(x)'
乘法法則:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)
除法法則:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2
根據導數定義證明數學導數運算法則由基本函數的和、差、積、商或相互復合構成的函數的導函數則可以通過函數的求導法則來推導。基本的求導法則如下:
1、求導的線性:對函數的線性組合求導,等于先對其中每個部分求導后再取線性組合(即①式)。
2、兩個函數的乘積的導函數:一導乘二+一乘二導(即②式)。
3、兩個函數的商的導函數也是一個分式:(子導乘母-子乘母導)除以母平方(即③式)。
4、如果有復合函數,則用鏈式法則求導。
導數的計算***函數y=f(x)在x0點的導數f'(x0)的幾何意義:表示函數曲線在點P0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函數曲線在這一點上的切線斜率)。
計算已知函數的導函數可以按照導數的定義運用變化比值的極限來計算。在實際計算中,大部分常見的解析函數都可以看作是一些簡單的函數的和、差、積、商或相互復合的結果。只要知道了這些簡單函數的導函數,那么根據導數的求導法則,就可以推算出較為復雜的函數的導函數。